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a few previous “big waves”

* procedural programming
& block structure

 static typing
* object-orientation

and some of their key properties
 intuitive
 efficient

« profound and incremental
- paradigms

 school of: organization design, separation of
concerns, abstraction, information hiding...
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object-orientation

 model world as objects

» classify objects into inheritance hierarchy

a<nalysis design

programmi}ng

objects all the way through

« trace-ability
« separation of concerns

— within each level
— across the levels
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a simple figure editor
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blocks, layers & now hierarchies have limits

classic sources of complexity in embedded systems

« synchronization, access control, accounting,
scheduling, performance optimization, power
management, logging, context dependence...

« crosscut blocks, layers, and hierarchies
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tracking when objects move in the
simple figure editor
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2 prefetching modes in Free BSD
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aspects

« aspects are crosscutting units

analysis design programming
< >
aspects (& objects & procedures) all the way through
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big steps in software development

* not just technology
— languages, tools

* not just work practice
— methods, books, management

» synergistic combination of both
— intuitive, efficient, profound, incremental
— procedural programming and related practices
— OO programming and related practices

—  <fill this space> ideas that bridge the
whole process
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